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The use of chemometric techniques, full factorial and Doehlert experimental designs, multivariate analysis
by MANOVA (�multiple-way analysis of the variance), and artificial neural networks (ANNs) for the
photocatalytic reaction of ethylenediaminetetraacetic acid (EDTA) over TiO2 in aqueous solution is described.
Based on the previous knowledge of the photocatalytic system, variables such as EDTA concentration,
photocatalyst concentration, pH, and irradiation time were chosen to build a set of experiments for the analysis.
By means of MANOVA, the statistical significance of the individual variables and the inspection of interactions
between them were analyzed. By the use of ANNs, correlation plots among variables may help to build a
semiempirical modeling for understanding and prediction the behavior of the system, optimizing parameters
valuable for further technological applications.

Introduction. ± Heterogeneous photocatalysis is one of the most studied processes
among advanced oxidation technologies. Our laboratory has performed studies on the
transformation of different substrates by this technique, working especially on the
oxidative degradation of ethylenediaminetetraacetic acid (EDTA) [1 ± 6]. Recently, a
complete study of this system has been initiated, establishing the influence of several
parameters on the reaction rate such as EDTA concentration, presence of oxidants,
etc., nature of the intermediates, and kinetic regime [7] [8]. Mechanisms associated
with EDTA-photocatalytic degradation are very complicated due to the variety of
intermediates formed during the progress of the reaction. In addition, advanced
oxidation technologies are characterized by the participation of many experimental
variables such as concentration of chemical components, temperature, irradiation
wavelength, multiple degradation pathways, among others, which relevantly influence
the mechanistic steps. In these complex systems, in which the verification of
mechanistic theories and the calculation of kinetic parameters must be made on the
basis of a rather large number of experiments, chemometric techniques can be very
useful. These techniques allow the appropriate design of the experiments and the
diminution of their number, facilitate the interpretation of multivariate phenomena
and are valuable tools for scaling up [9].

Artifical neural networks (ANNs) have been shown to be very useful for many
chemometric applications, including modeling and optimization. Several advantages
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underline the choice of ANNs over other methods: ANNs have the ability to trace the
behavior of the variables without the necessity of a hypothesis about the model
function. Additionally, ANNs can be successfully applied to nonlinear phenomena [10].
These multivariate analyses are valuable tools that may lead to semiempirical modeling
of systems [11]. Chemometrically speaking, semiempirical modeling means that a
chemical system is not described by an established mathematical function, but
correlation plots among variables allow one to understand the system. This leads to the
optimization of the experimental conditions for the design, the scale up of photo-
reactors, and other parameters useful for further technological applications
[10] [12] [13]. The use of the combination of experimental design (specifically Doehlert
[14]) and ANNs as analytical and optimization tools was previously proposed [15] [16].
Studies for modeling photochemical reactions [9] [17], especially photocatalytic
[9] [18] [19] and photo-Fenton [16] [20 ± 22] systems have been published in recent
years.

The present paper describes the use of chemometric techniques, Doehlert
experimental design, multiple-way analysis of the variance (MANOVA), and artificial
neural networks (ANNs) for the photocatalytic reaction of EDTA over TiO2.

Results and Discussion. ± Choice of Variables and of Experimental Conditions. To
design the type and amount of experiments to be performed for the chemometric
analyses, some very well-known features of general heterogeneous photocatalysis and
the previous particular knowledge of the EDTA/TiO2 system were used [7] [8] [23 ± 26].
Variables with the highest influence on the photocatalytic rate are usually the initial
substrate concentration (C0), the initial pH (pH0), the amount of photocatalyst, and the
irradiation time. Our previous experiments demonstrated that, as usual in heteroge-
neous photocatalysis, the kinetics of EDTA degradation follows a Langmuir-Hinshel-
wood behavior [7] [8] with a saturation of the rate at concentrations higher than 3 m�
EDTA. This suggests the influence of the substrate adsorption onto the TiO2 surface,
although this phenomenological behavior could be equally explained by other
mechanisms taking place in solution or at the interface. Thus, C0 was ranged between
1 and 5 m� to cover different regions of the Langmuir behavior.

The initial pH of the aqueous solution can significantly affect TiO2 photocatalysis,
and this can be additionally complicated if pH is not controlled during the irradiation.
Variations with pH in the driving force for EDTA oxidation over TiO2 have been
claimed to be small [27]. Therefore, changes in the photocatalytic rate can be attributed
mainly to changes in the adsorption of the substrate because of the existence of
different protolytic EDTA forms (including surface complexes) and changes in the
photocatalyst charge in relation with its point of zero charge (pzc) [28]. As it has been
suggested that the adsorption density of EDTA over TiO2 (Degussa P-25) did not vary
too much in the range 3 ± 5 [23] [24], pH0 was varied between 3.5 and 5.5 in the present
case.

Concerning reaction times, only measurements between 30 and 120 min were taken
as relevant. The lower limit was chosen to discard large errors frequently found in
heterogeneous-photocatalysis systems at shorter times. The upper limit was chosen
because previous studies under similar conditions indicated an important depletion of
EDTA at that time [7] [8].
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The experiments were performed with TiO2 concentrations between 0.5 and 2 g l�1,
taking into account that lower values can be detrimental due to an incomplete
absorption of light, whereas higher concentrations can cause a −screening× effect due to
high scattering and inappropriate penetration of light [29].

In this preliminary work, other variables such as wavelength and intensity of
irradiation, temperature, or amount of oxidants, which can also modify the photo-
catalytic rate, were kept constant. For example, saturation of the suspension with O2 or
air is crucial for EDTA degradation, as the presence of O2 prevents the detrimental
recombination of photogenerated electrons and holes [7]. Therefore, all experiments
were performed under constant O2 bubbling.

In Fig. 1, some selected degradation-averaged profiles are depicted, chosen from a
set of experiments used later for the multivariate analyses. The results are
representative of how the levels (different values taken by the factors, see p. 647 in
[31]) of C0, TiO2 concentration, and pH affect the kinetics of EDTA degradation.

Experimental errors were estimated around 9, 7, 4, and 2% for 30, 60, 90, and
120 min of irradiation, respectively, based on EDTA depletion, the experimental
response. Larger data dispersion was observed for TOC (total organic carbon) results.
Multiple-Way Analysis of the Variance (MANOVA). The first analysis was

performed by a three-way MANOVA (see Appendix). The data were collected

Fig. 1. Selected profiles of EDTA degradation by photocatalytic oxidation over TiO2. Conditions: near UV
irradiation (300 nm� �� 500 nm; maximum transmission at 360 nm), I0� 1.1 ¥ 10�5 Einstein l�1 s�1, T 25�. C0 in

m�, [TiO2] in g l�1.
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through a full-factorial design [30] [31] with 2 levels for pH0 and [TiO2] and 3 levels for
C0 (Table 1). Duplicate experiments under 12 different conditions were carried out,
taking samples after 30, 60, and 120 min of irradiation. Conditions and results at
120 min are shown in Table 2.

First inspections of responses verified a normal frequency±behavior distribution of
the data population for the 24 experiments with respect to EDTA degradation (Fig. 2)
and TOC (not shown). This verification of data is necessary to fulfill the theoretical
assumptions inherent in MANOVA. However, large data dispersion was observed for
TOC results and also for EDTA degradation at 30 min. Therefore, these data were
discarded for MANOVA, and only data of EDTA degradation at 60 and 120 min and
TOC decrease at 60 min were taken to be reliable. Table 3 is a typical MANOVA table
showing the results of the analysis at 120 min. Taking into account the common level of
significance p� 0.05, it can be concluded that C0 and [TiO2] have a strong influence on
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Table 1. Full Factorial Experimental Design for MANOVA

Factors Levels

high medium low

[TiO2]/g l�1 2 ± 0.5
C0/m� 1 3 5
pH0 3.5 ± 5.5

Table 2. Selected Experimental Responses for MANOVAa)

Exper. C0/m� [TiO2]/g l�1 pH0 Degradation extent at 120 minb)

1 1 0.5 3.5 0.88
2 1 0.5 3.5 0.89
3 3 0.5 3.5 0.78
4 3 0.5 3.5 0.76
5 5 0.5 3.5 0.72
6 5 0.5 3.5 0.72
7 3 2 3.5 0.83
8 3 2 3.5 0.86
9 5 2 3.5 0.83
10 5 2 3.5 0.82
11 1 2 3.5 0.86
12 1 2 3.5 0.84
13 3 0.5 5.5 0.75
14 3 0.5 5.5 0.83
15 5 0.5 5.5 0.74
16 5 0.5 5.5 0.66
17 1 0.5 5.5 0.93
18 1 0.5 5.5 0.86
19 3 2 5.5 0.84
20 3 2 5.5 0.85
21 5 2 5.5 0.76
22 5 2 5.5 0.73
23 1 2 5.5 0.97
24 1 2 5.5 0.98

a) Experimental conditions: near UV irradiation (300 nm� �� 500 nm; maximum transmission at 360 nm),
I0� 1.1 ¥ 10�5 Einstein l�1 s�1, T 25�. b) EDTA degradation extent defined as (C0�C)/C0 .



the response, but pH0 exerts a statistically insignificant effect. Furthermore, the results
of Table 3 show an interaction (see Appendix) between C0 and pH0, which is displayed
in Fig. 3. The influence of pH0, which appears to be insignificant in this analysis, is
discussed further in the next section. These results were in agreement with those of
TOC (not shown). Similar analysis for EDTA degradation after 60 min showed an
interaction between C0 and [TiO2] but, because of a greater dispersion of data, this
result will be examined later.

The interaction among the three variables, shown in Table 3 and also emerging from
TOC results, was not taken into account because it does not have a very significant p-
level, reinforced by the insignificant effect of pH.
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Fig. 2. Normal probability plot for EDTA degradation data at 120 min by MANOVA

Table 3. Results of MANOVA for the Photocatalytic Degradation of EDTA after 120-Min Irradiation (summary
of all effects)a)

Effect df Effectb) MS Effectb) df Errorb) MS Errorb) Fb) p-Level

1 1 4.7838 12 8.954483 0.53423 0.478862
2 1* 188.1005 12 8.954483 21.00629* 0.000629*
3 2* 484.292 12 8.954483 54.08375* 0.000001*

12 1 3.0225 12 8.954483 0.33754 0.572006
13 2* 72.5442 12 8.954483 8.10144* 0.005934*
23 2 14.3448 12 8.954483 1.60196 0.241742

123 2* 43.2769 12 8.954483 4.83299* 0.028868*

a) Variables: 1, pH0; 2, [TiO2]; 3, C0 . Asterisks refer to statistically significant effects at a level of significance
p� 0.05. b) df� degree of freedom; MS�mean square; F� s12/s22, s1 and s2 being the compared standard
deviations (see Appendix).



Another four-way MANOVAwas performed including time as a new independent
variable with levels of 60 and 120 min. The results showed a significant interaction
between C0 and time.
ANNs Modeling. The MANOVA of the system at two levels for pH0 and [TiO2]

allows to get only linear relationships for the variables. A more detailed description
requires more levels and other analytical tools. The interpretation of MANOVA results
can be confirmed and enriched by treatment with ANNs, allowing, in addition, the
modeling of the system.

The experimental-data collection for the training stage of the network was
performed with a Doehlert design [14]. In this case, only 13 experiments and their
duplicates were enough to cover the whole experimental range (Table 4), with 7 levels
for C0, 5 levels for [TiO2], and 3 for pH0. In thisDoehlert design, the highest number of
levels is assigned to the variables that need more-detailed descriptions. ANNs
Calculations were performed with a home-made program previously reported [11]. The
type of net was back propagation of errors (BPE) (see Appendix and ref. cit. therein).
The most efficient architecture was obtained with a network of 3 layers: 3 input
neurons, one hidden layer of 4 neurons, and 4 neurons in the output layer (Fig. 4). An
additional bias neuron was added to the hidden layer. The optimized response of the
network was obtained with a moment �� 0.9, a learning rate �� 0.5, and �� a� 1 for
the transfer function (see Appendix, Eqns. 2 and 3). The optimal training was attained
within approximately 50 epochs; this very fast convergence was due to the efficacy of
the experimental design. When the convergence was achieved, the error of prediction
kept on a flat minimum up to around 200 epochs, facilitating the selection of the opti-
mum numbers of epochs (seeAppendix). The ability to make predictions of the network
was checked with the set of experiments previously used for MANOVA (Table 2),

��������� 	
����� ���� ± Vol. 84 (2001)804

Fig. 3. Plot of means from two-way MANOVA C0/pH interaction for the degradation of EDTA. Experimental
data of Table 2.



estimating the root mean-square errors (RMSEs, see Appendix). The RMSE was 6%
for the training and 7% for the prediction stage, respectively. Note that, as said before,
experimental results were affected by a 2 ± 9% error, depending on the irradiation time.

All simulated predictions were performed within the experimental range of the
training set (Table 4). This means that no extrapolated results were obtained as, so far,
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Fig. 4. Net architecture and training method

Table 4. Doehlert Experimental Design and Responses for ANN Training a)

Exper. C0/m� [TiO2 ]/g l�1 pH0 Degradation extent at 120 min

1st series 2nd series

1 3.58 1.63 5.3 0.86 0.85
2 1.27 1.63 4.5 0.96 0.96
3 3.00 1.25 4.5 0.95 0.96
4 1.85 1.25 5.3 1.00 1.00
5 3.00 0.50 4.5 0.80 0.82
6 2.42 1.63 3.7 0.97 0.97
7 1.27 0.88 4.5 0.96 0.98
8 4.73 0.88 4.5 0.77 0.77
9 3.00 2.00 4.5 0.95 0.97
10 4.73 1.63 4.5 0.75 0.89
11 2.42 0.88 3.7 0.97 0.98
12 3.58 0.88 5.3 0.85 0.85
13 4.15 1.25 3.7 0.90 0.90

a) Conditions: near UV irradiation (300 nm� �� 500 nm; maximum transmission at 360 nm), I0� 1.1 ¥ 10�5

Einstein l�1 s�1, T 25�.



the validity of extrapolated predictions remains uncertain for the ANNs methodology
[10] [17]. Fig. 5,a, shows the agreement of the model for degradation data at 30 min,
which have the maximum errors for experiments and predictions. Experimental vs.
predicted results were compared for all different combinations of the operating
conditions. Each experimental point is a combination of variable levels. Considering
that the neural network tends to average the dispersion of experimental results, it can
be noted that points are distributed around both sides of the line, indicating the
goodness of the model. Fig. 5,b, displays the behavior of the model for the complete
time range of one selected experiment, showing excellent agreement between
calculated and experimental points.

Selected response plots corresponding to different analyses obtained by ANNs
simulations under particular conditions are presented in Figs. 6 ± 9 ; in the case of Figs. 7
and 9, only results at 120 min are displayed, but surfaces of similar shapes were
obtained for other reaction times.

As shown in Fig. 6,a, at the highest C0 value, the degradation follows an almost
zero-order behavior (with a slight deceleration), but the kinetic regime changes
progressively, attaining an order close to one at the lowest concentration. This denotes
typical Langmuir behavior. However, the observed deceleration seen in all curves
could also be due to changes in pH during the reaction and/or to the deactivation of the
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Fig. 5. a) Correlation between experimental and predicted values simulated by ANNs analysis at 30 min (error
bars taken as 9% for experimental data and 7% for prediction). b) Experimental and calculated points for

Exper. 7 of Table 4. C0 in m�, [TiO2] in g l�1.



catalyst by products [6]. The change in the kinetic regime is clearly observed in all
curves of Fig. 6,b, at a C0� 3 m�, in agreement with our previous results obtained by a
classical Langmuir-Hinshelwood treatment [7] [8]. The interaction between C0 and
time, predicted by MANOVA, appears clearly in the sigmoidal profiles, the height of
the step decreasing from shorter to longer times. This reinforces the hypothesis of a
Langmuir behavior: at C0� 3 m�, at shorter times, the system stays in the zero-order
regime, whereas as long as the reaction progresses, the kinetic regime changes to first
order because the substrate is depleted.

In response surface of Fig. 7, the interaction between C0 and pH0, predicted also by
MANOVA, can be observed directly. The profiles of degradation vs. C0 are sigmoidal,
with a higher initial slope at the highest pH0. The interaction can be interpreted by
changes in the adsorption density due to the pH-dependent forms of free and
complexed EDTA species. This interaction cannot be seen obviously at both limits of
the C0 range, due to total EDTA consumption at 120 min for low C0 , and because of the
saturation of the rate at high C0 due to the increased adsorption density of EDTA onto
the TiO2 surface. The insignificant average effect of pH0 on the system, which appeared
doubtful for MANOVA (see Table 3) appears here rather significant at intermediateC0

values, this result being more reliable because of the more detailed analysis performed
by ANNs.
Figs. 8 and 9 show the significant influence of TiO2 concentration on the response

results, as already observed by MANOVA. The increase in conversion with [TiO2] is
consistent with the enhancement of EDTA adsorption in more loaded systems, but this
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Fig. 6. Dependence of EDTA degradation as a function of time and C0 predicted by ANNs. Conditions: [TiO2]�
1 g l�1, pH0 4.5.



effect may be attributed also to the lack of a catalyst mass enough to warrant total
absorption of light, beyond which the addition of catalyst would not cause any change.
Experiments with [TiO2] higher than 2 g l�1 (outside of the range investigated here) are
needed to prove this hypothesis. Fig. 8 shows a low but not negligible interaction
between [TiO2] and time, slightly more remarkable in the first stages, whereas Fig. 9
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Fig. 8. Dependence of EDTA degradation as function of [TiO2] and time predicted by ANNs. Conditions: C0�
3 m�, pH0 4.5.

Fig. 7. Dependence of EDTA degradation as a function of C0 and pH0 at 120 min irradiation time predicted by
ANNs. [TiO2]� 1 g l�1.



displays a weak interaction between [TiO2] and pH0 not previously found by
MANOVA. Both small interactions can be interpreted by protolytic changes either
on the TiO2 surface or in EDTA speciation, which operate oppositely. As the pH
increases, the oxide becomes progressively less positive while EDTA species are more
negative; then, the beneficial effect of an increase in pH (below the pzc) can be
explained assuming a more important effect of the protolytic equilibrium of the
carboxylic acid compared with that of changes in TiO2. Additionally, Fig. 9 shows that
the behavior of the system changes progressively between the two pH limits; the
beginning of a saturation appears in the upper part of the surface from pH0 ca. 4.5 on (a
similar effect of saturation has been predicted in [18]). At a fixed [TiO2], a 10% more
of degradation is observed at pH0 5.5 than at pH0 3.5; this difference is significant
considering that, at 120 min, experimental and prediction errors are very low.

The interaction between pH0 and time, predicted to be significant by MANOVA,
appears doubtful after ANNs analysis (not shown), and can be attributed to the fact
that the pH was not controlled. Photocatalytic experiments at constant pH are needed
to arrive at a correct conclusion about the role of the pH. Similarly, the apparent
interaction between C0 and [TiO2], previously found by MANOVA for responses at
60 min, was discarded by the neuronal-network analysis.

It must be remarked that the input EDTA concentration for all multivariate
analyses was the initial concentration before TiO2 addition. The value at the adsorption
equilibriummarkedly varied with pH, TiO2 amount, and initial substrate concentration,
and an average value was judged to be incorrect to feed the calculations. Studies on
EDTA adsorption under all system conditions should be done to interpret its effects.
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Fig. 9. Dependence of EDTA degradation as a function of [TiO2] and pH0 at 120 min irradiation time predicted
by ANNs. C0� 3 m�.



Conclusions. ± Complex experimental systems difficult to model mathematically
and physicochemically can be conveniently handled by means of multivariate analysis.
Experimental design and semiempirical modeling offer a support to understand the
behavior of the system, and help to develop technological applications. Experimental
design permits a lot of experiments and time to be saved and to get a correct
registration of the multivariate space covered for the variables. Multilevel experimental
designs are necessary to describe the system through response surfaces algorithms
greater than second order. The Doehlert design here employed gives the highest
number of levels to those variables that need more detailed descriptions. Furthermore,
it was found that this experimental design helps to achieve a very rapid convergence of
the ANN. In addition, it was again demonstrated that BPE-ANNs built by three layers
with sigmoidal transfer-function neurons can solve efficiently a chemical system with a
remarkably low number of epochs.

The resultant analysis allowed interpretation of the correlations and interactions
among variables and verification of previously observed features of the EDTA/TiO2

photocatalytic system. The main brief conclusions from the studied ranges of C0, pH0,
and [TiO2] are 1)Langmuir-Hinshelwood kinetic behavior is confirmed. 2) The amount
of TiO2 is statistically significant and a higher load is necessary to assure the complete
light absorption. There is no interaction between C0 and TiO2. 3) An interaction
between C0 and pH0 is observed. 4) In the range 3.5 ± 5.5, the lowest acidities increase
moderately the degradation. 5) A weak interaction of pH0/TiO2 exists.

Work is underway to complete this ANNs study, taking into account especially the
effects of the pH and the amount of photocatalyst. It is proposed that the described
analytical procedure using a selected set of experiments to build a semiempirical model
can be a general tool to describe any similar TiO2 photocatalytic system and to predict
its behavior. These multivariate analyses can be a very valuable tool for the
optimization of the experimental conditions for technological applications such as
design and scale up of photocatalytic reactors, taking into account the role of the
influence of the different variables of the system.

Experimental Part

Chemicals. TiO2 (Degussa P-25) was a commercial sample, kindly supplied by the manufacturer (Degussa
AG, Germany). Na2EDTA (Carlo Erba) was of quality grade and used as provided. All other reagents were at
least of reagent grade and used without further purification. Water was doubly distilled in a quartz apparatus.
Dil. HClO4 or NaOH solns. were used for initial pH adjustments.

Photocatalytic Experiments. Irradiations were performed in a thermostatted cylindrical Pyrex cell
irradiated from above by a high-pressure Xe arc lamp (Osram XBO, 150) provided with a bandpass filter
(Schott BG 1; thickness 3 mm; 300 nm� �� 500 nm; maximum transmission at 360 nm) and a Schott KG 5 to
remove the IR fraction of the incident light. Actinometric measurements were performed by the ferrioxalate
method [32]. A photon flow per unit volume of 1.1 ¥ 10�5 Einstein l�1 s�1 was calculated.

Photocatalytic runs were done at 25�with, in all cases, 10 ml of a fresh EDTA soln. of known concentration,
adjusted to the desired pH0, and the corresponding mass of TiO2. The suspension was ultrasonicated for 2 min.
Prior to irradiation, suspensions were stirred in the dark for 30 min to assure adsorption equilibration.
Irradiations were performed under magnetic stirring, and a H2O-sat. O2 stream was bubbled in the suspension at
a 0.2 l min�1 constant rate throughout the experiment. During the irradiation, the pH was not controlled, and it
increased along the experiments due to the formation of basic intermediates including ammonia [7] [8]. These
pH changes depended on the starting value, the difference being higher (2 ± 3 units) under the most acidic
conditions. Samples were withdrawn periodically and filtered through 0.22-�m Millipore filters. The EDTA
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concentration was evaluated by spectrophotometric analysis with bis(2,4,6-tripyridyl-1,3,5-triazine)iron(II) in
the VIS range [33]. UV/VIS-Absorption measurements were performed with a Shimadzu 210A spectropho-
tometer. Total organic carbon (TOC) was measured with a Shimadzu 5000A TOC analyzer.

This work was performed as part of the Comisio¬n Nacional de EnergÌa Ato¬mica CNEA-CAC-UAQ project
#95-Q-03-05, Agencia Nacional de Promocio¬n de la Ciencia y la TecnologÌa (ANPCYT) project PICT98-13-
03672,Consejo Nacional de Investigaciones CientÌficas y Te¬cnicas (CONICET) project PIP662/98, and SecretarÌa
para la TecnologÌa, la Ciencia y la Innovacio¬n Productiva project ES/PA/00-EXIII/005. We thank the CYTED
Program, a −Scientific Iberoamerican Cooperation Action× (CYTED VIII-G), for subsidy. C. A. E. thanks
ANPCYT for a fellowship to perform this work. M. I. L. is a member of CONICET.

Appendix. Basic Concepts about MANOVA. The statistical significance of a result is an estimated measure
of the degree to which it is true or representative of the population of data. The variability of a set of data is
partially due to random errors, but if a factor introduces some influence in the measurements, this influence will
appear like a systematic error. Then, the analysis of the variance (ANOVA) helps to find out the possible
influence of a factor on the measurements. According to Scheffe [34], ANOVA is defined as a −statistical
technique for analyzing measurements that depends on several kinds of effects operating simultaneously to
decide which kind of effects are important and to estimate the effects×. When only a single possible effect is
studied, the procedure is called one-way ANOVA, but if several factors are being analyzed at the same time, the
process is called multiple-way ANOVA or MANOVA.

To analyze whether a factor has an effect on the measurements (the responses), a statistical hypothesis test
is usually applied, whose description is beyond the scope of this work and can be found in basic texts of statistics.
Usually, a table is built containing the calculations and parameters used to interpret the ANOVA or MANOVA
results. The significance of these parameters can also be found in statistics texts. In our case, Table 3 shows the
results of MANOVA analysis, displaying the following parameters: the degrees of freedom (df), the mean-
square (MS) of errors and effects, the F-test (F� s12/s22, where s1 and s2 are the compared standard deviations,
with s1� s2), and the significance level (p-level). Specifically, the p-level represents the probability of error
involved in accepting the validity of an observed value as representative of the population. In many areas of
research, a p-level� 0.05 is an acceptable probability level.

When the effect of one factor is modified by the level of another, it is said that there is an −interaction×
between these factors. Interactions can occur among more than two factors.

Theoretical Aspects of the ANNs Technique. The ANNs try to mimic a natural neural network and use a
scheme composed of neurons and channels to propagate information. The back propagation of errors (BPE) net
architecture can be built by multiple layers of neurons, but the assembling of three layers, one for input, a hidden
layer, and an output (Fig. 4) is enough to solve a variety of problems. The number of neurons of the input layer is
determined by the number of input variables and, analogously, the number of neurons of the output layer is
determined by the number of output variables. The complete architecture, i.e., the number of hidden layers with
the corresponding number of neurons in each one, is usually determined by trial and error. Connections in the
net are established only among different layers.

During the training of the network, the information is collected by the input layer, where it is distributed to
all the neurons of the hidden layer. Aweighed sum (Net) of the input signals arrives to the neuron, and can be
described by Eqn. 1, where l stands for layer, j for neuron, and i for inputs,m being the total number of inputs of
the neuron. In the present case, the starting weights w for the training stage were randomly established in the
range � 1�w� 1. The Nets values are then modified by a mathematical transfer function. As this function can
be linear or nonlinear, the ANNs have the ability to respond also to nonlinear phenomena. In our case, we used
the nonlinear sigmoidal function of Eqn. 2, where � and a are constants related to the form of the transfer
function [10].

Netlj�
�m
i�1

wli ¥ xli (1)

Out(Net)� [1� exp(�(a�Net))]�1 (2)

The derivative of the transfer function (Eqn. 2), on which calculations depend, has a general expression of
the form f �(x)� f(x) ¥ (1� f(x)), whose simplicity allows a very fast calculation (see below).

Subsequently, the information is transferred to the following layer, where a similar process yields new
output, which can be the input for another layer or the final result.
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In the training stage, the net output is compared with the true (measured) value of a −learning set× of
experiments, and the weights w are corrected to improve the output until a convergence is achieved. During the
training, the data matrix is passed through the net several times, and each time is called an −epoch×. The
adjustments of the weightswi are made using a −gradient descent× algorithm, whose most general form is given by
Eqn. 3. The parameter �, called learning rate, determines the speed of change of the weights, while the
momentum (�) regulates the most recent correction to prevent sudden changes in the adjust direction. The
values of � and � must be empirically adjusted to optimize the efficiency of the calculation.

�wlji� � ¥ �lj ¥Outl�1
i � � ¥�wl �previous�ji (3)

The concept of convergence means that, after several epochs (usually thousands), the net approaches
progressively the expected true values within a reasonable error deviation. During the calculations, the
convergence cannot be assured, and sometimes it is not attained. The error of the convergence is checked by a
so-called −cost function×, which, in our case, is given by Eqn. 4, i.e. the sum of the quadratic differences between
the net outputs and the experimental results y, where n is the number of vector inputs or −objects×. This error
depends also on � and �.

RMSE�
�������������������������������������������
1�n�

�n
i�1

�yi � Outi�2
�

(4)

Once the net has been trained, the weights w remain unchanged, and their ability for predictions is checked
against a new set of experiments (−test set×). Usually, errors during training descend continuously through
successive epochs, but errors during predictions, after an initial lowering, begin to increase again. The number of
epochs appropriate to stop the training is a compromise between these two kinds of errors. The RMSE
calculated from data of the −test set× indicates the ability of prediction of the ANN and its accuracy.

The complete description of the calculation and programming of the BPE network is beyond the scope of
this report. A specific discussion of this subject can be found in [10] [35 ± 37].

After training the net and having attained an acceptable accuracy, it is possible to simulate any experiments
by introducing the corresponding set of values of the input variables to obtain the corresponding responses. In
this way, it is possible to study the behavior of the variables and the relationships among them.
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